编辑
2025-01-20
记录知识
0

整个openharmony的ADM基本已经解析完成,如果我们了解过ALSA的话,我们知道整个ALSA中,DAPM关于控件设计的精髓,ADM为了不抛弃这么一个精髓,于是设计了SAPM,虽然我在编写es8388的时候不太敢用,但是这里还是有必要通过对比的方式解析一下ADM对的SAPM

一、简单介绍DAPM

在之前的文章提到过DAPM:内核alsa框架解析

这里简单的,通俗的理解一下DAPM。

DAPM是动态电源管理,我们知道codec有一个概念是音频路由,也就意味着如果我要声音能播放,我需要将codec内部的组件打开,这里可以在Openharmony audio(七) es8388的register说明找到

如果我们直接将寄存器打开关闭,那么就没必要设计一个所谓的DAPM的概念了。

那么DAPM的作用是什么呢。

  • 将音频路由抽象成一根链条,音频信号是链条上的一个组件,此时音频组件和路由的关系可以形象化了
  • 将每个组件抽象成了电源域,这样每个组件的状态可以通过DAPM来控制,而不是直接写寄存器了
  • 音频的所有通路都是不同的链条,当有一个链条打开了,其他没打开的链条会自动关闭,这样更节能,不需要人为的设置这,设置那
  • 每个组件都有概念,例如mux是类似单刀多掷开关,而mixer可以将组件多路合并一路,有形象的概念,理解音频路由就不困难了

我再说简单点,就是设计了一个能够让普通人能理解的概念,告诉大家,打开音频需要把某一路开关打开,其他开关就关闭,就跟开灯的开关一样。

这个思想好吗,我认为非常好,即使一个不懂得电子电路的人,他只需要知道打开开关就打开一条通路,然后声音就播放了。

二、ADM的SAPM

2.1 power on/down sequence

模仿dapm的dapm_up_seq/dapm_down_seq,sapm实现了如下:

/* power up sequences */ static int32_t g_audioSapmPowerUpSeq[] = { [AUDIO_SAPM_PRE] = 0, /* 0 is audio sapm power up sequences */ [AUDIO_SAPM_SUPPLY] = 1, /* 1 is audio sapm power up sequences */ [AUDIO_SAPM_MICBIAS] = 2, /* 2 is audio sapm power up sequences */ [AUDIO_SAPM_AIF_IN] = 3, /* 3 is audio sapm power up sequences */ [AUDIO_SAPM_AIF_OUT] = 3, /* 3 is audio sapm power up sequences */ [AUDIO_SAPM_MIC] = 4, /* 4 is audio sapm power up sequences */ [AUDIO_SAPM_MUX] = 5, /* 5 is audio sapm power up sequences */ [AUDIO_SAPM_VIRT_MUX] = 5, /* 5 is audio sapm power up sequences */ [AUDIO_SAPM_VALUE_MUX] = 5, /* 5 is audio sapm power up sequences */ [AUDIO_SAPM_DAC] = 6, /* 6 is audio sapm power up sequences */ [AUDIO_SAPM_MIXER] = 7, /* 7 is audio sapm power up sequences */ [AUDIO_SAPM_MIXER_NAMED_CTRL] = 7, /* 7 is audio sapm power up sequences */ [AUDIO_SAPM_PGA] = 8, /* 8 is audio sapm power up sequences */ [AUDIO_SAPM_ADC] = 9, /* 9 is audio sapm power up sequences */ [AUDIO_SAPM_OUT_DRV] = 10, /* 10 is audio sapm power up sequences */ [AUDIO_SAPM_HP] = 10, /* 10 is audio sapm power up sequences */ [AUDIO_SAPM_SPK] = 10, /* 10 is audio sapm power up sequences */ [AUDIO_SAPM_POST] = 11, /* 11 is audio sapm power up sequences */ }; /* power down sequences */ static int32_t g_audioSapmPowerDownSeq[] = { [AUDIO_SAPM_PRE] = 0, /* 0 is audio sapm power down sequences */ [AUDIO_SAPM_ADC] = 1, /* 1 is audio sapm power down sequences */ [AUDIO_SAPM_HP] = 2, /* 2 is audio sapm power down sequences */ [AUDIO_SAPM_SPK] = 2, /* 2 is audio sapm power down sequences */ [AUDIO_SAPM_OUT_DRV] = 2, /* 2 is audio sapm power down sequences */ [AUDIO_SAPM_PGA] = 4, /* 4 is audio sapm power down sequences */ [AUDIO_SAPM_MIXER_NAMED_CTRL] = 5, /* 5 is audio sapm power down sequences */ [AUDIO_SAPM_MIXER] = 5, /* 5 is audio sapm power down sequences */ [AUDIO_SAPM_DAC] = 6, /* 6 is audio sapm power down sequences */ [AUDIO_SAPM_MIC] = 7, /* 7 is audio sapm power down sequences */ [AUDIO_SAPM_MICBIAS] = 8, /* 8 is audio sapm power down sequences */ [AUDIO_SAPM_MUX] = 9, /* 9 is audio sapm power down sequences */ [AUDIO_SAPM_VIRT_MUX] = 9, /* 9 is audio sapm power down sequences */ [AUDIO_SAPM_VALUE_MUX] = 9, /* 9 is audio sapm power down sequences */ [AUDIO_SAPM_AIF_IN] = 10, /* 10 is audio sapm power down sequences */ [AUDIO_SAPM_AIF_OUT] = 10, /* 10 is audio sapm power down sequences */ [AUDIO_SAPM_SUPPLY] = 11, /* 11 is audio sapm power down sequences */ [AUDIO_SAPM_POST] = 12, /* 12 is audio sapm power down sequences */ };

2.1 检查通路

我们知道dapm会检查是否有一个链路通,如果通,则根据这条链路打开组件电源,这里dapm实现如下:

static int dapm_generic_check_power(struct snd_soc_dapm_widget *w) { int in, out; DAPM_UPDATE_STAT(w, power_checks); in = is_connected_input_ep(w, NULL, NULL); out = is_connected_output_ep(w, NULL, NULL); return out != 0 && in != 0; }

ADM也一样去实现了,实现如下

static int32_t AudioSapmGenericCheckPower(const struct AudioSapmComponent *sapmComponent) { int32_t input; int32_t output; if (sapmComponent == NULL) { ADM_LOG_ERR("input param cpt is NULL."); return HDF_FAILURE; } input = ConnectedInputEndPoint(sapmComponent); if (input == HDF_FAILURE) { ADM_LOG_ERR("input endpoint fail!"); return HDF_FAILURE; } output = ConnectedOutputEndPoint(sapmComponent); if (output == HDF_FAILURE) { ADM_LOG_ERR("output endpoint fail!"); return HDF_FAILURE; } if ((input == 0) || (output == 0)) { ADM_LOG_DEBUG("component %s is not in a complete path.", sapmComponent->componentName); return SAPM_POWER_DOWN; } return SAPM_POWER_UP; }

2.2 组件

对于dapm,每个组件是widget,这个widget应该是codec注册,因为codec知道自己需要多少组件,所以有函数

snd_soc_dapm_new_widgets

对应驱动如下编写:

static const struct snd_soc_dapm_widget es8323_dapm_widgets[] = { SND_SOC_DAPM_INPUT("LINPUT1"), SND_SOC_DAPM_INPUT("LINPUT2"), SND_SOC_DAPM_INPUT("RINPUT1"), SND_SOC_DAPM_INPUT("RINPUT2"), SND_SOC_DAPM_MUX("Left PGA Mux", SND_SOC_NOPM, 0, 0, &es8323_left_dac_mux_controls), SND_SOC_DAPM_MUX("Right PGA Mux",SND_SOC_NOPM , 0, 0, &es8323_right_dac_mux_controls), SND_SOC_DAPM_MICBIAS("Mic Bias", ES8323_ADCPOWER, 3, 1), .... }

这样驱动就很灵活的定义widget,如下:

static struct snd_soc_component_driver soc_codec_dev_es8323 = { .dapm_widgets = es8323_dapm_widgets, .num_dapm_widgets = ARRAY_SIZE(es8323_dapm_widgets), };

这时候ADM不这么想了,他说我知道所有的组件,我定义了数组g_audioSapmCompNameList,如下

static char *g_audioSapmCompNameList[AUDIO_SAPM_COMP_NAME_LIST_MAX] = { "ADCL", "ADCR", "DACL", "DACR", // [0], [1] [2], [3] "LPGA", "RPGA", "SPKL", "SPKR", // [4], [5] [6], [7] "MIC", "LOUT", "HPL", "HPR", // [8], [9] [10], [11] "Stereo Mixer", "Line Mix", "Input Mixer", "Speaker Mix", // [12], [13] [14], [15] "Input Mux", "AuxOut Mux", "SPKL Mux", "SPKR Mux", // [16], [17] [18], [19] "AUXOUTL", "AUXOUTR", "LINEINL", "LINEINR", // [20], [21] [22], [23] "AUXINL", "AUXINR", "I2S Mix", "AuxI Mix", // [24], [25] [26], [27] "CaptureL Mix", "CaptureR Mix", "Mono1 Mixer", "Mono2 Mixer", // [28], [29] [30], [31] "DAC1", "DAC2", "DAC3", "DAC4", // [32], [33] [34], [35] "ADC1", "ADC2", "ADC3", "ADC4", // [36], [37] [38], [39] "MIC1", "MIC2", "MIC3", "MIC4", // [40], [41],[42], [43], "SPK1", "SPK2", "SPK3", "SPK4", // [44], [45],[46], [47], "DAC Mix", "DAC Mux", "ADC Mix", "ADC Mux", // [48], [49],[50], [51], "SPKL PGA", "SPKR PGA", "HPL PGA", "HPR PGA", // [52], [53],[54], [55], };

然后呢,你按照这个数组下标数字去注册,也就是在hcs中写数字

sapmComponent = [ 10, 0, 0xFFFF, 0x1, 7, 1, 0, 0, //ADCL 10, 1, 0xFFFF, 0x1, 6, 1, 0, 0, //ADCR 11, 32, 0xFFFF, 0xFFFF, 0, 0, 0, 0, //DAC1 11, 33, 0xFFFF, 0xFFFF, 0, 0, 0, 0, //DAC2 11, 34, 0xFFFF, 0xFFFF, 0, 0, 0, 0, //DAC3 6, 52, 0xFFFF, 0xFFFF, 0, 0, 3, 1, //SPKL PGA 6, 54, 0xFFFF, 0xFFFF, 0, 0, 4, 1, //HPL PGA 6, 55, 0xFFFF, 0xFFFF, 0, 0, 5, 1, //HPR PGA 15, 6, 0xFFFF, 0xFFFF, 0, 0, 0, 0, //SPK 14, 10, 0xFFFF, 0xFFFF, 0, 0, 0, 0, //HPL 14, 11, 0xFFFF, 0xFFFF, 0, 0, 0, 0, //HPR 6, 4, 0xFFFF, 0xFFFF, 6, 0, 1, 1, //LPGA 6, 5, 0xFFFF, 0xFFFF, 6, 0, 2, 1, //RPGA 13, 40, 0xFFFF, 0xFFFF, 6, 0, 0, 0, //MIC1 13, 41, 0xFFFF, 0x1, 1, 0, 0, 0 //MIC2 ];

也就是说,ADM认为不管未来还是现在,Codec永远就只有这些组件了,如果再多,那就是你Codec的问题了。

此时我们需要主动调用AudioSapmNewComponents函数来注册上面的数字的组件,如下:

if (AudioSapmNewComponents(audioCard, device->devData->sapmComponents, device->devData->numSapmComponent) != HDF_SUCCESS) { AUDIO_DRIVER_LOG_ERR("new components failed."); return HDF_FAILURE; }

所以此时dapm更灵活,它的widget是自己codec定义的,此时widgete可多可少,想怎么扩展怎么扩展。

2.3 路由

我们知道alsa的框架下,路由也是通过驱动注册,如下:

.dapm_routes = audio_map, .num_dapm_routes = ARRAY_SIZE(audio_map),

这里的audio_map告诉你上面的组件的路由情况,和widget一致,需要在驱动中写明白你自己注册的组件,你需要怎么连接,具体可以参考内核alsa框架解析的第六章音频路由分析,如下:

static const struct snd_soc_dapm_route audio_map[] = { {"Left PGA Mux", "Line 1L", "LINPUT1"}, {"Left PGA Mux", "Line 2L", "LINPUT2"}, {"Left PGA Mux", "DifferentialL", "Differential Mux"}, {"Right PGA Mux", "Line 1R", "RINPUT1"}, {"Right PGA Mux", "Line 2R", "RINPUT2"}, {"Right PGA Mux", "DifferentialR", "Differential Mux"} }

这非常合乎常理,也很自然。

我们的ADM,它实现了函数AudioSapmAddRoutes,仿照了alsa的概念,实现了sink和source,如下:

struct AudioSapmRoute { const char *sink; const char *control; const char *source; /* Note: currently only supported for links where source is a supply */ uint32_t (*Connected)(struct AudioSapmComponent *source, struct AudioSapmComponent *sink); };

所以在codec的hdf的driver中,需要定义如下:

static const struct AudioSapmRoute g_audioRoutes[] = { { "SPKL", NULL, "SPKL PGA"}, { "HPL", NULL, "HPL PGA"}, { "HPR", NULL, "HPR PGA"}, { "SPKL PGA", "Speaker1 Switch", "DAC1"}, { "HPL PGA", "Headphone1 Switch", "DAC2"}, { "HPR PGA", "Headphone2 Switch", "DAC3"}, { "ADCL", NULL, "LPGA"}, { "ADCR", NULL, "RPGA"}, { "LPGA", "LPGA MIC Switch", "MIC1"}, { "RPGA", "RPGA MIC Switch", "MIC2"}, };

然后添加如下:

if (AudioSapmAddRoutes(audioCard, g_audioRoutes, HDF_ARRAY_SIZE(g_audioRoutes)) != HDF_SUCCESS) { AUDIO_DRIVER_LOG_ERR("add route failed."); return HDF_FAILURE; }

这里ADM使用了sapmcfg,也就是变量g_audioSapmCfgNameList,作为route的control,它对于hcs的如下:

/*array index, iface, mixer/mux, enable (g_audioSapmCfgNameList)*/ sapmConfig = [ 0, 2, 0, 1, 1, 2, 0, 0, 24, 2, 0, 1, 28, 2, 0, 0, 29, 2, 0, 1 ];

于是仿照了alsa的snd_soc_dapm_add_route实现了AudioSapmAddRoute如下:

static int32_t AudioSapmAddRoute(struct AudioCard *audioCard, const struct AudioSapmRoute *route) { struct AudioSapmpath *path = NULL; struct AudioSapmComponent *cptSource = NULL; struct AudioSapmComponent *cptSink = NULL; struct AudioSapmComponent *sapmComponent = NULL; int32_t ret; DLIST_FOR_EACH_ENTRY(sapmComponent, &audioCard->components, struct AudioSapmComponent, list) { if (sapmComponent->componentName == NULL) { continue; } if ((cptSource == NULL) && (strcmp(sapmComponent->componentName, route->source) == 0)) { cptSource = sapmComponent; continue; } if ((cptSink == NULL) && (strcmp(sapmComponent->componentName, route->sink) == 0)) { cptSink = sapmComponent; } if ((cptSource != NULL) && (cptSink != NULL)) { break; } } path = (struct AudioSapmpath *)OsalMemCalloc(sizeof(struct AudioSapmpath)); if (path == NULL) { ADM_LOG_ERR("malloc path fail!"); return HDF_FAILURE; } path->source = cptSource; path->sink = cptSink; DListHeadInit(&path->list); DListHeadInit(&path->listSink); DListHeadInit(&path->listSource); /* check for external components */ AudioSampExtComponentsCheck(cptSource, cptSink); ret = AudioSampStaticOrDynamicPath(audioCard, cptSource, cptSink, path, route); if (ret != HDF_SUCCESS) { OsalMemFree(path); ADM_LOG_ERR("static or dynamic path fail!"); return HDF_FAILURE; } return HDF_SUCCESS; }

同样的,仿照alsa的snd_soc_dapm_add_path,实现了AudioSampStaticOrDynamicPath,如下:

static int32_t AudioSampStaticOrDynamicPath(struct AudioCard *audioCard, struct AudioSapmComponent *source, struct AudioSapmComponent *sink, struct AudioSapmpath *path, const struct AudioSapmRoute *route) { int32_t ret; if (route->control == NULL) { DListInsertHead(&path->list, &audioCard->paths); DListInsertHead(&path->listSink, &sink->sources); DListInsertHead(&path->listSource, &source->sinks); path->connect = CONNECT_SINK_AND_SOURCE; return HDF_SUCCESS; } switch (sink->sapmType) { case AUDIO_SAPM_MUX: case AUDIO_SAPM_VIRT_MUX: case AUDIO_SAPM_VALUE_MUX: ret = AudioSapmConnectMux(audioCard, source, sink, path, route->control); if (ret != HDF_SUCCESS) { ADM_LOG_ERR("connect mux fail!"); return HDF_FAILURE; } break; case AUDIO_SAPM_ANALOG_SWITCH: case AUDIO_SAPM_MIXER: case AUDIO_SAPM_MIXER_NAMED_CTRL: case AUDIO_SAPM_PGA: case AUDIO_SAPM_SPK: ret = AudioSapmConnectMixer(audioCard, source, sink, path, route->control); if (ret != HDF_SUCCESS) { ADM_LOG_ERR("connect mixer fail!"); return HDF_FAILURE; } break; case AUDIO_SAPM_HP: case AUDIO_SAPM_MIC: case AUDIO_SAPM_LINE: DListInsertHead(&path->list, &audioCard->paths); DListInsertHead(&path->listSink, &sink->sources); DListInsertHead(&path->listSource, &source->sinks); path->connect = CONNECT_SINK_AND_SOURCE; break; default: DListInsertHead(&path->list, &audioCard->paths); DListInsertHead(&path->listSink, &sink->sources); DListInsertHead(&path->listSource, &source->sinks); path->connect = CONNECT_SINK_AND_SOURCE; break; } return HDF_SUCCESS; }

至此,我们可以发现,SAPM和DAPM本质是一样的,相当于重复根据DAPM的设计思路造了一个SAPM的轮子。

三、结论

根据上面的代码分析,我们可以发现sapm和dapm实现是类似的,但是根据我调试时发现,sapm定义是强制的,也就是

  • 如果驱动不定义sapm,驱动会报错
  • 如果sapm设置的g_audioRoutes不在g_audioSapmCompNameList中,驱动会报错
  • 如果hcs设置的sapmComponent和g_audioRoutes以及g_audioSapmCompNameList不匹配,则驱动报错

所以,只有完全了解sapm的玩法,并且按照ADM的规则,死死的配置,并按照数字的方式配置正确,你的驱动才能正常。

为了避免这个问题,我在ControlHostElemWrite中直接返回了,这样ADM就不走SAPM的control设置了。

虽然现在分析了sapm,它和DAPM完全一致,我应该也可以通过sapm的配置完成正确的声卡设置,但是我认为也没必要了。因为sapm目前还不是很成熟。

编辑
2025-01-20
记录知识
0

对于声卡的播放和录制,数据搬运到i2s上去发送是通过dma处理的,应用的数据通过stream dispatch下来,这时候,我们需要将其发送在dma的通道上,然后dma附在i2s的接收寄存器地址上,从而使得i2s直接可以发送音频数据,所以需要一个dma的hdf driver,这里分析这个驱动

一、Rk3568DmaSubmit,代码目录

对于dma的驱动,代码路径如下:

device/board/hihope/rk3568/audio_drivers/soc/src/

相应文件如下:

rk3568_dma_adapter.c rk3568_dma_ops.c

二、代码解析

2.1 rk3568_dma_adapter.c

这里注册HDF driver,如下

/* HdfDriverEntry definitions */ struct HdfDriverEntry g_platformDriverEntry = { .moduleVersion = 1, .moduleName = "DMA_RK3568", .Bind = PlatformDriverBind, .Init = PlatformDriverInit, .Release = PlatformDriverRelease, }; HDF_INIT(g_platformDriverEntry);

这里Bind提供服务,Init开始初始化,咱们关注Init,它提供ADM注册codec时的回调,并注册platform设备,如下:

static int32_t PlatformDriverInit(struct HdfDeviceObject *device) { int32_t ret; struct PlatformData *platformData = NULL; struct PlatformHost *platformHost = NULL; if (device == NULL) { AUDIO_DEVICE_LOG_ERR("device is NULL."); return HDF_ERR_INVALID_OBJECT; } platformHost = (struct PlatformHost *)device->service; if (platformHost == NULL) { AUDIO_DEVICE_LOG_ERR("platformHost is NULL"); return HDF_FAILURE; } platformData = (struct PlatformData *)OsalMemCalloc(sizeof(*platformData)); if (platformData == NULL) { AUDIO_DEVICE_LOG_ERR("malloc PlatformData fail!"); return HDF_FAILURE; } ret = PlatformGetServiceName(device, platformData); if (ret != HDF_SUCCESS) { OsalMemFree(platformData); return ret; } platformData->PlatformInit = AudioDmaDeviceInit; platformData->ops = &g_dmaDeviceOps; if (AudioDmaGetConfigInfo(device, platformData) != HDF_SUCCESS) { OsalMemFree(platformData); return HDF_FAILURE; } OsalMutexInit(&platformData->renderBufInfo.buffMutex); OsalMutexInit(&platformData->captureBufInfo.buffMutex); ret = AudioSocRegisterPlatform(device, platformData); if (ret != HDF_SUCCESS) { OsalMemFree(platformData); return ret; } platformHost->priv = platformData; AUDIO_DEVICE_LOG_DEBUG("success.\n"); return HDF_SUCCESS; }

这里需要提供ops回调,如下

struct AudioDmaOps g_dmaDeviceOps = { .DmaBufAlloc = Rk3568DmaBufAlloc, .DmaBufFree = Rk3568DmaBufFree, .DmaRequestChannel = Rk3568DmaRequestChannel, .DmaConfigChannel = Rk3568DmaConfigChannel, .DmaPrep = Rk3568DmaPrep, .DmaSubmit = Rk3568DmaSubmit, .DmaPending = Rk3568DmaPending, .DmaPause = Rk3568DmaPause, .DmaResume = Rk3568DmaResume, .DmaPointer = Rk3568PcmPointer, };

2.2 rk3568_dma_ops.c

这个文件主要实现上述AudioDmaOps 需要填充的函数回调,以及实现ADM Platform driver的Init回调。

对于Init回调,主要解析hcs的配置中dma_config.hcs对dma的配置。主要如下:

idInfo { chipName = "/i2s@fe410000"; chipIdRegister = 0xfe410000; chipIdSize = 0x1000; }

这种情况下,我们通过chipIdRegister+offset就能找到i2s的搬运地址。这样dma就能直接处理

而对于dma的通道,还是基于dts的设置来通过内核dma的api来申请dma,如下

static int32_t GetDmaChannel(struct PlatformData *data) { struct DmaRuntimeData *dmaRtd = NULL; struct device_node *dmaOfNode = NULL; struct device *dmaDevice = NULL; struct property *dma_names = NULL; const char *dma_name = NULL; bool hasRender = false; bool hasCapture = false; static const char * const dmaChannelNames[] = { [DMA_TX_CHANNEL] = "tx", [DMA_RX_CHANNEL] = "rx", }; dmaRtd = (struct DmaRuntimeData *)data->dmaPrv; if (dmaRtd == NULL) { AUDIO_DEVICE_LOG_ERR("dmaRtd is null."); return HDF_FAILURE; } dmaOfNode = dmaRtd->dmaOfNode; if (dmaOfNode == NULL) { AUDIO_DEVICE_LOG_ERR("dmaOfNode is null."); return HDF_FAILURE; } of_property_for_each_string(dmaOfNode, "dma-names", dma_names, dma_name) { if (strcmp(dma_name, "rx") == 0) { hasCapture = true; } if (strcmp(dma_name, "tx") == 0) { hasRender = true; } } dmaDevice = dmaRtd->dmaDev; if (dmaDevice == NULL) { AUDIO_DEVICE_LOG_ERR("dmaDevice is null."); return HDF_FAILURE; } if (hasRender) { dmaRtd->dmaChn[DMA_TX_CHANNEL] = dma_request_slave_channel(dmaDevice, dmaChannelNames[DMA_TX_CHANNEL]); if (dmaRtd->dmaChn[DMA_TX_CHANNEL] == NULL) { AUDIO_DEVICE_LOG_ERR("dma_request_slave_channel DMA_TX_CHANNEL failed"); return HDF_FAILURE; } } if (hasCapture) { dmaRtd->dmaChn[DMA_RX_CHANNEL] = dma_request_slave_channel(dmaDevice, dmaChannelNames[DMA_RX_CHANNEL]); if (dmaRtd->dmaChn[DMA_RX_CHANNEL] == NULL) { AUDIO_DEVICE_LOG_ERR("dma_request_slave_channel DMA_RX_CHANNEL failed"); return HDF_FAILURE; } } return HDF_SUCCESS; }

这里要求了dts的dma配置如下:

i2s1_8ch: i2s@fe410000 { compatible = "rockchip,rk3568-i2s-tdm"; reg = <0x0 0xfe410000 0x0 0x1000>; interrupts = <GIC_SPI 53 IRQ_TYPE_LEVEL_HIGH>; clocks = <&cru MCLK_I2S1_8CH_TX>, <&cru MCLK_I2S1_8CH_RX>, <&cru HCLK_I2S1_8CH>; clock-names = "mclk_tx", "mclk_rx", "hclk"; dmas = <&dmac1 2>, <&dmac1 3>; dma-names = "tx", "rx"; ........ }

这时候就有疑问了,为什么dts描述的很清楚(reg = <0x0 0xfe410000 0x0 0x1000>;),还需要hcs重复写一遍dma搬运地址和大小,直接从dts拿reg属性和node name就行了?这里我给出的结论就是:

  • 对于Rk3568DmaBufAlloc,就是内核的dma_alloc_wc

  • 对于Rk3568DmaBufFree,就是内核的dma_free_wc

  • 对于Rk3568DmaRequestChannel,空的设计

  • 对于Rk3568DmaConfigChannel,就是内核的dmaengine_slave_config

  • 对于Rk3568DmaPrep,空的设计

  • 对于Rk3568DmaSubmit,就是内核的dmaengine_prep_dma_cyclic

  • 对于Rk3568DmaPause,就是内核的dmaengine_terminate_async

  • 对于Rk3568PcmPointer,根据声卡的设计,将byte转换成audio的frame,如下

static int32_t BytesToFrames(uint32_t frameBits, uint32_t size, uint32_t *pointer) { if (pointer == NULL || frameBits == 0) { AUDIO_DEVICE_LOG_ERR("input para is error."); return HDF_FAILURE; } *pointer = size / frameBits; return HDF_SUCCESS; }

对于上述的设计,我们可以发现,其思想借鉴于ALSA的pcm_dmaengine.c。

与pcm_dmaengine.c不同的是,pcm_dmaengine.c实现了更通用的dmaengine,对于dai来说注册devm_snd_dmaengine_pcm_register即可,pcm_dmaengine.c只做audio的抽象。分层使得代码更健壮。

而这里的rk3568_dma_ops.c是直接指定了dma,并简化了pcm_dmaengine.c的实现。相当于将一个良好的,通用的,成熟的方案,写成了一个固定的,不灵活的,残缺的方案。

三、结论

我们根据分析dma的hdf driver,可以知道openharmony通过直接了当的方式,将数据通过dma在i2s上搬运进出。同时也知道了,目前的dma驱动实现的非常简陋,而且十分固定,不过代码能跑就是福。

编辑
2025-01-20
记录知识
0

对于声卡的dai部分,因为i2s是rk3568侧的通讯总线,所以我们对于i2s的控制器这侧也需要配置正确,这样rk3568的i2s发送音频数据的时候,es8388能够正常的接收,所以有必要介绍一下rk侧的i2s的驱动,也就是dai驱动

一、代码目录

对于i2s的驱动,代码路径如下:

device/board/hihope/rk3568/audio_drivers/dai/

相应文件如下:

rk3568_dai_adapter.c rk3568_dai_linux_driver.c rk3568_dai_ops.c

二、代码解析

2.1 rk3568_dai_linux_driver.c

此驱动主要注册platfrom设备,读取dts的配置,设置时钟和分频,大致如下

static struct platform_driver rockchip_i2s_tdm_driver = { .probe = rockchip_i2s_tdm_probe, .remove = rockchip_i2s_tdm_remove, .driver = { .name = DRV_NAME, .of_match_table = of_match_ptr(rockchip_i2s_tdm_match), .pm = NULL, }, }; module_platform_driver(rockchip_i2s_tdm_driver); static int rockchip_i2s_tdm_probe(struct platform_device *pdev) { struct device_node *node = pdev->dev.of_node; const struct of_device_id *of_id; struct rk3568_i2s_tdm_dev *i2s_tdm; struct resource *res; struct device *temp_i2s_dev; ...... i2s_tdm->bclk_fs = 64; // default-freq div factor is 64 if (!of_property_read_u32(node, "rockchip,bclk-fs", &val)) { if ((val >= 32) && (val % 2 == 0)) // min-freq div factor is 32, and it is an integer multiple of 2 i2s_tdm->bclk_fs = val; } ...... i2s_tdm->mclk_tx = devm_clk_get(&pdev->dev, "mclk_tx"); if (IS_ERR(i2s_tdm->mclk_tx)) { return PTR_ERR(i2s_tdm->mclk_tx); } i2s_tdm->mclk_rx = devm_clk_get(&pdev->dev, "mclk_rx"); if (IS_ERR(i2s_tdm->mclk_rx)) { return PTR_ERR(i2s_tdm->mclk_rx); } res = platform_get_resource(pdev, IORESOURCE_MEM, 0); i2s_tdm->regmap = devm_regmap_init_mmio(&pdev->dev, devm_ioremap_resource(&pdev->dev, res), &rockchip_i2s_tdm_regmap_config); if (IS_ERR(i2s_tdm->regmap)) { return PTR_ERR(i2s_tdm->regmap); } ...... }

2.2 rk3568_dai_adapter.c

这份驱动是hdf的驱动程序,它通过HDF_INIT(g_daiDriverEntry);来注册一个hdf的驱动

/* HdfDriverEntry definitions */ struct HdfDriverEntry g_daiDriverEntry = { .moduleVersion = 1, .moduleName = "DAI_RK3568", .Bind = DaiDriverBind, .Init = DaiDriverInit, .Release = DaiDriverRelease, }; HDF_INIT(g_daiDriverEntry);

对于Bind回调,绑定服务,对于Init,用作注册dai,如下

daiData = (struct DaiData *)OsalMemCalloc(sizeof(*daiData)); if (daiData == NULL) { AUDIO_DEVICE_LOG_ERR("malloc DaiData fail!"); return HDF_FAILURE; } daiData->Read = Rk3568DeviceReadReg, daiData->Write = Rk3568DeviceWriteReg, daiData->DaiInit = Rk3568DaiDeviceInit, daiData->ops = &g_daiDeviceOps, daiData->daiInitFlag = false; OsalMutexInit(&daiData->mutex); daiHost->priv = daiData; if (DaiGetConfigInfo(device, daiData) != HDF_SUCCESS) { AUDIO_DEVICE_LOG_ERR("get dai data fail."); OsalMemFree(daiData); return HDF_FAILURE; } if (DaiGetServiceName(device, daiData) != HDF_SUCCESS) { AUDIO_DEVICE_LOG_ERR("get service name fail."); OsalMemFree(daiData); return HDF_FAILURE; } ret = AudioSocRegisterDai(device, (void *)daiData);

所以这里涉及一个dai的结构体,用于触发startup和hwparams以及trigger时的i2s的寄存器设置,如下:

struct AudioDaiOps g_daiDeviceOps = { .Startup = Rk3568DaiStartup, .HwParams = Rk3568DaiHwParams, .Trigger = Rk3568NormalTrigger, };

2.3 rk3568_dai_ops.c

对于startup回调,这里i2s不需要做任何事情

对于hwparams回调,这里需要根据实际的参数,设置i2s的寄存器,时钟,如下:

int32_t Rk3568DaiHwParams(const struct AudioCard *card, const struct AudioPcmHwParams *param) { int ret; uint32_t bitWidth; struct DaiDevice *dai = NULL; struct DaiData *data = DaiDataFromCard(card); struct platform_device *platformdev = NULL; struct rk3568_i2s_tdm_dev *i2sTdm = NULL; if (card == NULL || card->rtd == NULL || param == NULL || param->cardServiceName == NULL) { AUDIO_DEVICE_LOG_ERR("input para is NULL."); return HDF_ERR_INVALID_PARAM; } if (data == NULL) { AUDIO_DEVICE_LOG_ERR("data is nullptr."); return HDF_FAILURE; } dai = card->rtd->cpuDai; platformdev = GetPlatformDev(dai); if (platformdev == NULL) { AUDIO_DEVICE_LOG_ERR("platformdev is NULL."); return HDF_FAILURE; } data->pcmInfo.channels = param->channels; AUDIO_DEVICE_LOG_DEBUG("channels count : %d .", param->channels); if (AudioFormatToBitWidth(param->format, &bitWidth) != HDF_SUCCESS) { AUDIO_DEVICE_LOG_ERR("AudioFormatToBitWidth error"); return HDF_FAILURE; } data->pcmInfo.bitWidth = bitWidth; data->pcmInfo.rate = param->rate; data->pcmInfo.streamType = param->streamType; i2sTdm = dev_get_drvdata(&platformdev->dev); if (i2sTdm == NULL) { AUDIO_DEVICE_LOG_ERR("i2sTdm is null"); return HDF_FAILURE; } ret = RK3568I2sTdmSetSysClk(i2sTdm, param); if (ret != HDF_SUCCESS) { AUDIO_DEVICE_LOG_ERR("RK3568I2sTdmSetSysClk error"); return HDF_FAILURE; } ret = RK3568I2sTdmSetMclk(i2sTdm, param); if (ret != HDF_SUCCESS) { AUDIO_DEVICE_LOG_ERR("RK3568I2sTdmSetMclk error"); return HDF_FAILURE; } AUDIO_DEVICE_LOG_DEBUG("success"); return HDF_SUCCESS; }

对于trigger回调,判断是否是stop/pause,start/resume,来控制i2s的寄存器,如下

static int32_t Rk3568TxAndRxSetReg(struct rk3568_i2s_tdm_dev *i2sTdm, enum AudioStreamType streamType, int on) { int ret; if (i2sTdm == NULL || i2sTdm->regmap == NULL) { AUDIO_DEVICE_LOG_ERR("i2sTdm is null"); return HDF_FAILURE; } if (on) { // when start/resume ret = Rk3568TxAndRxStart(i2sTdm, streamType); if (ret != HDF_SUCCESS) { AUDIO_DEVICE_LOG_ERR("Rk3568TxAndRxStart is failed"); return HDF_FAILURE; } } else { // when stop/pause ret = Rk3568TxAndRxStop(i2sTdm, streamType); if (ret != HDF_SUCCESS) { AUDIO_DEVICE_LOG_ERR("Rk3568TxAndRxStop is failed"); return HDF_FAILURE; } } AUDIO_DEVICE_LOG_DEBUG("success"); return HDF_SUCCESS; }

三、总结

至此,rk3568的i2s的hdf驱动解析完成,我们可以知道,对于i2s,我们应该在合适的时候对其设置rk3568这侧的寄存器,让其按照指定的方式和codec进行通讯,所以需要这么一个hdf driver。

编辑
2025-01-20
记录知识
0

根据Openharmony audio(六) es8388的hcs配置中的配置,我们需要填写大量针对es8388寄存器的设置,所以这块需要我们对es8388的寄存器配置说明有一个描述文档,然后针对此文档进行驱动的设计和开发,如下是具体过程

一、es8388 datasheet

es8388的datashell可以从其官网查阅,如下是链接

http://www.everest-semi.com/pdf/ES8388%20DS.pdf

二、音频通路

我们能够拿到codec的datasheet后,第一件事就可以了解如何让其工作,也就是音频通路,我们可以参考我的文章《内核alsa框架解析》

根据datasheet我们可以发现es8388是音频设计十分简单,我重新贴图如下:

image.png 此图片可以从《ES8388 User Guide》找到,此文档贴心的给出了声音输出的设置方式,如下

image.png

三、寄存器说明

根据一中的文档,我们可以找到所有寄存器的设置说明,如下我们贴出来大致情况,方便查阅

image.png image.png image.png image.png

3.1 reset寄存器说明

我们在hcs设置和hdf driver的开发的时候,需要进行software reset,这个对应寄存器是0x00 0x80,如下:

resetSeqConfig = [ 0x00, 0x80, 0x00, 0x00, ];

这里的寄存器说明如下:

image.png 我们留意bit7,这里是SCPReset,如果写1则重置codec

3.2 startup寄存器说明

在hcs设置时,需要在dai startup时设置寄存器,如下:

/* reg, rreg, shift, rshift, min, max, mask, invert, value */ daiStartupSeqConfig = [ 0x03, 0x03, 0, 0, 0x0, 0xFF, 0xFF, 0, 0xf9, // es8388 adc power standby 0x04, 0x04, 0, 0, 0x0, 0xFF, 0xFF, 0, 0x3c, // es8388 dac power prepare 0x0f, 0x0f, 0, 0, 0x0, 0xFF, 0xFF, 0, 0x20, // es8316_adc_mute(capture unmute) 0x19, 0x19, 0, 0, 0x0, 0xFF, 0xFF, 0, 0x02 // es8388 dac unmute (DACCONTROL3) ];

对于0x3,设置0xf9,关掉adc的power,寄存器描述如下

image.png 对于0x4,设置0x3c,将L/R OUT都打开,寄存器描述如下:

image.png 对于0xf,设置0x20,将麦克风禁音,寄存器描述如下:

image.png 对于0x19,设置0x2,将DAC Mute关闭,也就是打开喇叭,寄存器描述如下:

image.png

3.3 音频位数

不同的音频音乐,通过设置不同的bit来播放,这个寄存器是0x17,假设音频是16位的,那么设置为0x18,如下:

image.png

3.4 其他参数

音频还有其他参数,例如mclk的分屏倍数,i2s的格式,声音的增益等等,这里就不一一列举了。都可以根据datasheet的描述,将其通过寄存器的方式设置进去

四、调试I2C

根据上面的介绍,我们知道了如何根据寄存器设置codec的状态,这里为了调试i2c,可以通过i2cdump命令来直接调试i2c设备,从而准确的知道每时每刻的codec寄存器的状态,如下:

# i2cdump -fy 2 0x10 0 1 2 3 4 5 6 7 8 9 a b c d e f 0123456789abcdef 00: 32 50 00 f9 3c 00 00 7c 00 88 f0 02 00 02 30 20 2P.?<..|.???.?0 10: 00 00 ea a2 32 06 00 00 02 02 00 00 08 00 1f f7 ..??2?..??..?.?? 20: fd ff 1f f7 fd ff 00 b8 28 28 b8 80 00 00 1e 1e ??????.?((??..?? 30: 1c 1c 00 aa aa 00 08 00 00 00 00 40 84 84 00 00 ??.??.?....@??.. 40: 32 50 00 f9 3c 00 00 7c 00 88 f0 02 00 02 30 20 2P.?<..|.???.?0 50: 00 00 ea a2 32 06 00 00 02 02 00 00 08 00 1f f7 ..??2?..??..?.?? 60: fd ff 1f f7 fd ff 00 b8 28 28 b8 80 00 00 1e 1e ??????.?((??..?? 70: 1c 1c 00 aa aa 00 08 00 00 00 00 40 84 84 00 00 ??.??.?....@??.. 80: 32 50 00 f9 3c 00 00 7c 00 88 f0 02 00 02 30 20 2P.?<..|.???.?0 90: 00 00 ea a2 32 06 00 00 02 02 00 00 08 00 1f f7 ..??2?..??..?.?? a0: fd ff 1f f7 fd ff 00 b8 28 28 b8 80 00 00 1e 1e ??????.?((??..?? b0: 1c 1c 00 aa aa 00 08 00 00 00 00 40 84 84 00 00 ??.??.?....@??.. c0: 32 50 00 f9 3c 00 00 7c 00 88 f0 02 00 02 30 20 2P.?<..|.???.?0 d0: 00 00 ea a2 32 06 00 00 02 02 00 00 08 00 1f f7 ..??2?..??..?.?? e0: fd ff 1f f7 fd ff 00 b8 28 28 b8 80 00 00 1e 1e ??????.?((??..?? f0: 1c 1c 00 aa aa 00 08 00 00 00 00 40 84 84 00 00 ??.??.?....@??..

根据上面可以知道es8388的寄存器所有状态,此时我们对照datasheet去排查是否存在异常即可。对照寄存器是否异常的事情需要比较细心。

五、结论

至此,我们可以通过es8388的datasheet和user guide来控制codec的工作了。只要codec正常上电,声音参数配置正确,音频通路设置正确,那么声卡就能够正常工作。

编辑
2025-01-20
记录知识
0

我们编写了es8388的hdf驱动后,需要针对es8388的寄存器配置hcs,,同样可以参考《Audio开发实例》的说明进行开发,如下是具体配置情况

一、device_info.hcs

这里需要更新RK809的Codec为ES8388,修改如下:

device_primary :: deviceNode { policy = 1; priority = 50; preload = 0; permission = 0666; moduleName = "CODEC_ES8388"; serviceName = "codec_service_0"; deviceMatchAttr = "hdf_codec_driver_0"; }

二、codec_config.hcs

这里需要根据es8388的寄存器配置以及adm下的hdf规则修改配置,具体的寄存器说明会在Openharmony audio(七) es8388的register说明介绍,这里仅说如何修改hcs配置

2.1 resetSeqConfig

根据es8388的寄存器说明,我们在使用es8388的时候,需要进行一下寄存器的reset,所以需要新增resetSeqConfig,如下

/* reg, value */ resetSeqConfig = [ 0x00, 0x80, 0x00, 0x00, ];

2.2 initSeqConfig

根据es8388的寄存器手册描述,我们需要更新初始化寄存器的配置,如下:

initSeqConfig = [ 0x01, 0x60, 0x02, 0xF3, 0x02, 0xF0, 0x2B, 0x80, 0x00, 0x36, 0x08, 0x00, 0x04, 0x00, 0x06, 0xC3, 0x19, 0x02, 0x09, 0x88, 0x0A, 0xF0, 0x0B, 0x02, 0x0C, 0x0C, 0x0D, 0x02, 0x10, 0x00, 0x11, 0x00, 0x12, 0xea, 0x13, 0xa2, 0x14, 0x32, 0x17, 0x18, 0x18, 0x02, 0x1A, 0x00, 0x1B, 0x00, 0x27, 0xB8, 0x2A, 0xB8, 0x2E, 0x1E, 0x2F, 0x1E, 0x30, 0x1E, 0x31, 0x1E, 0x03, 0x09, 0x02, 0x00, 0x04, 0x3C, 0x07, 0x7C, 0x05, 0x00, 0x06, 0x00, 0x02, 0x00, 0x03, 0x59, 0x2b, 0x80, 0x01, 0x50, 0x00, 0x32, 0x02, 0x00, 0x04, 0x3c, 0x03, 0x59, 0x31, 0x1c, 0x30, 0x1c, 0x19, 0x02, 0x32, 0x00, 0x33, 0xaa, 0x34, 0xaa, 0x35, 0x00, 0x36, 0x08, 0x37, 0x00, 0x38, 0x00, 0x39, 0x00, 0x3a, 0x00, 0x3b, 0x40, 0x3c, 0x0a, 0x3d, 0xe4, 0x3e, 0x00, 0x3f, 0x00, ];

2.2 daiStartupSeqConfig

codec在startup回调时需要开启部分寄存器,需要更新daiStartupSeqConfig,如下:

/* reg, rreg, shift, rshift, min, max, mask, invert, value */ daiStartupSeqConfig = [ 0x03, 0x03, 0, 0, 0x0, 0xFF, 0xFF, 0, 0xf9, // es8388 adc power standby 0x04, 0x04, 0, 0, 0x0, 0xFF, 0xFF, 0, 0x3c, // es8388 dac power prepare 0x0f, 0x0f, 0, 0, 0x0, 0xFF, 0xFF, 0, 0x20, // es8316_adc_mute(capture unmute) 0x19, 0x19, 0, 0, 0x0, 0xFF, 0xFF, 0, 0x02 // es8388 dac unmute (DACCONTROL3) ];

2.3 ctrlSapmParamsSeqConfig/sapmComponent/sapmConfig

es8388不需要不成熟的sapm设置,所以我这边在ControlHostElemWrite中禁用,如下:

/**/ ADM_LOG_INFO("es8388 does not require sapm!"); return HDF_SUCCESS; ADM_LOG_INFO("if the audio codec is not es8388, remove the code"); /**/ kctrl = AudioGetKctrlInstance(&elem

三、结论

至此,基于es8388的hcs的配置已经完成设置完成,es8388能够正常的通过ADM框架正常工作了